Transcriptomic analysis of Arabidopsis overexpressing flowering locus T driven by a meristem-specific promoter that induces early flowering.
نویسندگان
چکیده
Here we analyzed in leaves the effect of FT overexpression driven by meristem-specific KNAT1 gene homolog of Arabidopsis thaliana (Lincoln et al., 1994; Long et al., 1996) on the transcriptomic response during plant development. Our results demonstrated that meristematic FT overexpression generates a phenotype with an early flowering independent of photoperiod when compared with wild type (WT) plants. Arabidopsis FT-overexpressor lines (AtFTOE) did not show significant differences compared with WT lines neither in leaf number nor in rosette diameter up to day 21, when AtFTOE flowered. After this period AtFTOE plants started flower production and no new rosette leaves were produced. Additionally, WT plants continued on vegetative stage up to day 40, producing 12-14 rosette leaves before flowering. Transcriptomic analysis of rosette leaves studied by sequencing Illumina RNA-seq allowed us to determine the differential expression in mature leaf rosette of 3652 genes, being 626 of them up-regulated and 3026 down-regulated. Overexpressed genes related with flowering showed up-regulated transcription factors such as MADS-box that are known as flowering markers in meristem and which overexpression has been related with meristem identity preservation and the transition from vegetative to floral stage. Genes related with sugar transport have shown a higher demand of monosaccharides derived from the hydrolysis of sucrose to glucose and probably fructose, which can also be influenced by reproductive stage of AtFTOE plants.
منابع مشابه
Dataset of Arabidopsis plants that overexpress FT driven by a meristem-specific KNAT1 promoter
In this dataset we integrated figures comparing leaf number and rosette diameter in three Arabidopsis FT overexpressor lines (AtFTOE) driven by KNAT1 promoter, "A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis" [5], vs Wild Type (WT) Arabidopsis plats. Also, presented in the tables are some transcriptomic data obtained by RNA-seq Illumina HiSeq from r...
متن کاملAGAMOUS-LIKE 17, a novel flowering promoter, acts in a FT-independent photoperiod pathway.
The photoperiod pathway is a genetically conserved pathway that affects flowering in distantly related angiosperms. Here we report a novel flowering promoter AGAMOUS-LIKE 17 (AGL17) acting in the photoperiod pathway of Arabidopsis. AGL17 transcripts were detectable in various plant organs with the highest expression in the root. Under long-day conditions, expression of AGL17 gradually increased...
متن کاملArabidopsis TERMINAL FLOWER1 Is Involved in the Regulation of Flowering Time and Inflorescence Development through Transcriptional Repression C W OA
TERMINAL FLOWER1 (TFL1) is a key regulator of flowering time and the development of the inflorescence meristem in Arabidopsis thaliana. TFL1 and FLOWERING LOCUS T (FT) have highly conserved amino acid sequences but opposite functions. For example, FT promotes flowering and TFL1 represses it; FT-overexpressing plants and TFL1 loss-of-function mutants have a similar phenotype production of termin...
متن کاملPolycomb-Group Proteins and FLOWERING LOCUS T Maintain Commitment to Flowering in Arabidopsis thaliana.
The switch from vegetative to reproductive growth is extremely stable even if plants are only transiently exposed to environmental stimuli that trigger flowering. In the photoperiodic pathway, a mobile signal, florigen, encoded by FLOWERING LOCUS T (FT) in Arabidopsis thaliana, induces flowering. Because FT activity in leaves is not maintained after transient photoperiodic induction, the molecu...
متن کاملEctopic expression of Jatropha curcas APETALA1 (JcAP1) caused early flowering in Arabidopsis, but not in Jatropha
Jatropha curcas is a promising feedstock for biofuel production because Jatropha oil is highly suitable for the production of biodiesel and bio-jet fuels. However, Jatropha exhibits a low seed yield as a result of unreliable and poor flowering. APETALA1 (AP1) is a floral meristem and organ identity gene in higher plants. The flower meristem identity genes of Jatropha have not yet been identifie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Gene
دوره 587 2 شماره
صفحات -
تاریخ انتشار 2016